

COMP3005: Computer Vision

Machine learning for pattern recognition

Jonathon Hare jsh2@ecs.soton.ac.uk

- Recognising patterns is a large part of computer vision
 - * i.e. recognising text, people, objects, ...
- Obviously there's a lot of overlap with intelligent algorithms, machine learning and AI.
- This lecture will cover (recap?) some of the fundamentals of machine learning and introduce how you connect arrays of pixels to machine learning algorithms.

Feature spaces

Key terminology

- * **featurevector**: a mathematical vector
 - * just a list of (usually Real) numbers
 - * has a fixed number of **elements** in it
 - * The number of elements is the **dimensionality** of the vector
 - represents a **point** in a **featurespace** or equally a **direction** in the featurespace
 - the dimensionality of a featurespace is the dimensionality of every vector within it
 - vectors of differing dimensionality can't exist in the same featurespace

Demo: a really simple feature extractor

Distance and similarity

Distances in featurespace

- Feature extractors are often defined so that they produce vectors that are *close* together for *similar* inputs
 - Closeness of two vectors can be computed in the feature space by measuring a distance between the vectors.

Euclidean distance (L2 distance)

- * L2 distance is the most intuitive distance...
 - The straight-line distance
 between two points
 - Computed via an extension
 of Pythagoras theorem to *n* dimensions:

$$D_2(p,q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} = ||p - q|| = \sqrt{(p - q) \cdot (p - q)}$$

L1 distance (aka Taxicab/Manhattan)

 L1 distance is computed along paths parallel to the axes of the space:

$$D_1(p,q) = \sum_{i=1}^n |p_i - q_i| = ||p - q||_1$$

Cosine Similarity

- Cosine similarity measures the cosine of the angle between two vectors
 - * It is not a distance!

$$\cos(\theta) = \frac{p \cdot q}{\|p\|\|q\|} = \frac{\sum_{i=1}^{n} p_i q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \sqrt{\sum_{i=1}^{n} q_i^2}}$$

 Useful if you don't care about the relative length of the vectors

Choosing good featurevector representations for machine-learning

- Choose features which allow to distinguish objects or classes of interest
 - Similar within classes
 - Different between classes
- Keep number of features small
 - Machine-learning can get more difficult as dimensionality of featurespace gets large

Supervised Machine Learning: *Classification*

- Classification is the process of assigning a class label to an object (typically represented by a vector in a feature space).
- A supervised machinelearning algorithm uses a set of pre-labelled *training data* to learn how to assign class labels to vectors (and the corresponding objects).
 - A binary classifier only has two classes
 - A multiclass classifier has many classes.

Cat or Dog?

Linear classifiers

Linear classifiers try to learn a hyperplane that separates two classes in featurespace with minimum error

Linear classifiers

Lots of hyperplanes to choose from... different linear classification algorithms apply differing constraints when learning the classifier

Linear classifiers

Demo: perceptron linear classifier

Linear classifiers work best when the data is linearly separable...

No hope for a linear classifier!

Non-linear binary classifiers, such as Kernel Support Vector **Machines** learn nonlinear decision boundaries

Have to be careful... you might loose generality by overfitting

Multiclass classifiers: KNN

Demo: KNN Classification

KNN Problems

- * Computationally expensive if there are:
 - * Lots of training examples
 - * Many dimensions

Unsupervised Machine Learning: *Clustering*

- Clustering aims to group data without any prior knowledge of what the groups should look like or contain.
- In terms of featurevectors, items with similar vectors should be grouped together by a clustering operation.
- Some clustering operations create overlapping groups; for now we're only interested in disjoint clustering methods that assign an item to a single group.

K-Means Clustering

- * K-Means is a classic featurespace clustering algorithm for grouping data into *K* groups with each group represented by a *centroid*:
 - The value of K is chosen
 - K initial cluster centres are chosen
 - Then the following process is performed iteratively until the centroids don't move between iterations:
 - * Each point is assigned to its closest centroid
 - The centroid is recomputed as the mean of all the points assigned to it. If the centroid has no points assigned it is randomly re-initialised to a new point.
 - The final clusters are created by assigning all points to their nearest centroid.

Demo: K-Means Clustering

Summary

- * Extracting features is key part of computer vision
 - Typically, these are numerical vectors that can be used with machine-learning techniques.
 - Featurevectors can be compared by measuring distance
- * Classification learns what class to assign a feature to.
- * Clustering groups similar features.